SHIFTR enables the unbiased and multiplexed identification of proteins bound to specific RNA regions in live cells

Author:

Aydin Jens,Gabel Alexander,Zielinski Sebastian,Ganskih Sabina,Schmidt Nora,Hartigan Christina R.,Schenone Monica,Carr Steven A.,Munschauer MathiasORCID

Abstract

ABSTRACTRNA-protein interactions determine the cellular fate of RNA and are central to regulating gene expression outcomes in health and disease. To date, no method exists that is able to identify proteins that interact with specific regions within endogenous RNAs in live cells. Here, we develop SHIFTR (Selective RNaseH-mediated interactome framing for target RNA regions), an efficient and scalable approach to identify proteins bound to selected regions within endogenous RNAs using mass spectrometry. Compared to state-of-the-art techniques, SHIFTR is superior in accuracy, captures close to zero background interactions and requires orders of magnitude lower input material. We establish SHIFTR workflows for targeting RNA classes of different length and abundance, including short and long non-coding RNAs, as well as mRNAs and demonstrate that SHIFTR is compatible with sequentially mapping interactomes for multiple target RNAs in a single experiment. Using SHIFTR, we comprehensively identify interactions ofcis-regulatory elements located at the 5ʹ and 3ʹ- terminal regions of the authentic SARS-CoV-2 RNA genome in infected cells and accurately recover known and novel interactions linked to the function of these viral RNA elements. SHIFTR enables the systematic mapping of region-resolved RNA interactomes for any RNA in any cell type and has the potential to revolutionize our understanding of transcriptomes and their regulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3