Arrested Agonist Paradigm For Selective Radiosensitization of Prostate Cancer

Author:

Coulter Jonathan B.ORCID,Haffner Michael C.ORCID,Zhang Yonggang,Zhou Haoming,Pham Minh-TamORCID,Chen JiayuORCID,Chikarmane Roshan,Mishra Alok,Mehl Maire S.,Kazibwe Stella,Choi Kirsten,Archey Ava,Valluri Sarayu,Lupold Shawn E.ORCID,Song Daniel,De Marzo AngeloORCID,Nelson William G.,DeWeese Theodore L.,Yegnasubramanian SrinivasanORCID

Abstract

AbstractAs a prototypical nuclear hormone receptor, the androgen receptor (AR) signals via a sequential cascade triggered by binding to androgenic ligands such as testosterone and dihydrotestosterone (DHT). This cascade includes dimerization of the ligand-receptor complex, nuclear translocation, chromatin binding to response elements, recruitment of TOP2B and co-activator complexes, and induction of an effector transcriptional program. In prostate cancers, this AR signaling cascade is an essential driver of growth and survival, yet its activity confers potential vulnerabilities through transient TOP2B-mediated DNA double strand breaks. We investigated the ability of non-steroidal AR ligands to activate initial steps of the AR signaling cascade up to the point of AR- and TOP2B-mediated double strand breaks, with subsequent arrest of the signaling cascade to prevent induction of pro-growth/survival transcriptional programs in prostate cancer cells. We identified hydroxyflutamide (FLU) as such an androgen receptor arrested agonist; in androgen-deprived conditions, FLU induced AR nuclear translocation, chromatin binding, and TOP2B-mediated double strand breaks, but failed to induce AR target gene expression and prostate cancer cell growth. The FLU-mediated arrest in the signaling cascade could be attributed to the inability of FLU to allow association of AR with SMARCD2, a critical component of the BAF chromatin remodeling complex required for androgen induced AR co-activation. Interestingly, the FLU-induced, AR- and TOP2B-mediated double strand breaks could be used to selectively sensitize AR-positive prostate cancer cells to ionizing radiationin vitroandin vivo. These findings support a novel arrested agonist paradigm for selective radiosensitization of prostate cancer cells without inducing AR-mediated pro-growth and survival transcriptional programs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3