Interpreting Molecular Dynamics Forces as Deep Learning Gradients Improves Quality Of Predicted Protein Structures

Author:

King Jonathan EdwardORCID,Koes David RyanORCID

Abstract

ABSTRACTProtein structure predictions from deep learning models like AlphaFold2, despite their remarkable accuracy, are likely insufficient for direct use in downstream tasks like molecular docking. The functionality of such models could be improved with a combination of increased accuracy and physical intuition. We propose a new method to train deep learning protein structure prediction models using molecular dynamics force fields to work toward these goals. Our custom PyTorch loss function, OpenMM-Loss, represents the potential energy of a predicted structure. OpenMM-Loss can be applied to any all-atom representation of protein structure capable of mapping into our software package, SidechainNet. We demonstrate our method’s efficacy by finetuning OpenFold. We show that subsequently predicted protein structures, both before and after a relaxation procedure, exhibit comparable accuracy while displaying lower potential energy and improved structural quality as assessed by MolProbity metrics.SIGNIFICANCEWe propose a novel framework to directly incorporate forces from molecular dynamics as gradients for training deep learning models like AlphaFold2. We implement our method as a PyTorch loss function, OpenMM-Loss, which frames the potential energy of predicted protein structures as a minimization objective. When applied to OpenFold, our method demonstrates improved structural quality, lower potential energy, and comparable accuracy relative to the OpenFold baseline. Our framework may enhance the ability of deep learning models to recapitulate fundamental biophysical principles, reducing the number of structural irregularities in their predictions and paving the way for more effective downstream applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3