Information gathering explains decision dynamics during human and monkey reward foraging

Author:

Barack David LORCID,Parodi Felipe,Ludwig Vera,Platt Michael L

Abstract

AbstractForaging in humans and other animals requires a delicate balance between exploitation of current resources and exploration for new ones. The tendency to overharvest—lingering too long in depleting patches—is a routine behavioral deviation from predictions of optimal foraging theories. To characterize the computational mechanisms driving these deviations, we modeled foraging behavior using a virtual patch-leaving task with human participants and validated our findings in an analogous foraging task in two monkeys. Both humans and monkeys overharvested and stayed longer in patches with longer travel times compared to shorter ones. Critically, patch residence times in both species declined over the course of sessions, enhancing reward rates in humans. These decisions were best explained by a logistic transformation that integrated both current rewards and information about declining rewards. This parsimonious model demystifies both the occurrence and dynamics of overharvesting, highlighting the role of information gathering in foraging. Our findings provide insight into computational mechanisms shaped by ubiquitous foraging dilemmas, underscoring how behavioral modeling can reveal underlying motivations of seemingly irrational decisions.

Publisher

Cold Spring Harbor Laboratory

Reference73 articles.

1. A primer on foraging and the explore/exploit trade-off for psychiatry research;Neuropsychopharmacology,2017

2. Entropy expressions and their estimators for multivariate distributions;IEEE Transactions on Information Theory,1989

3. Ainslie, G. and N. Haslam (1992). Hyperbolic Discounting. Choice Over Time. G. Loewenstein and J. Elster. New York, Russell Sage. 57-92.

4. Visuospatial information foraging describes search behavior in learning latent environmental features;Scientific Reports,2023

5. Posterior cingulate neurons dynamically signal decisions to disengage during foraging;Neuron,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3