Abstract
AbstractBehavioral variability across individuals leads to substantial performance differences during cognitive tasks, although its neuronal origin and mechanisms remain elusive. Here we use recurrent neural networks trained on a multisensory decision-making task to investigate inter-subject behavioral variability. By uniquely characterizing each network with a random synaptic-weights initialization, we observed a large variability in the level of accuracy, bias and decision speed across these networks, mimicking experimental observations in mice. Performance was generally improved when networks integrated multiple sensory modalities. Additionally, individual neurons developed modality-, choice- or mixed-selectivity, these preferences were different for excitatory and inhibitory neurons, and the concrete composition of each network reflected its preferred behavioral strategy: fast networks contained more choice- and mixed-selective units, while accurate networks had relatively less choice-selective units. External modulatory signals shifted the preferred behavioral strategies of networks, suggesting an explanation for the recently observed within-session strategy alternations in mice.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献