CD1d-dependent neuroinflammation impairs tissue repair and functional recovery following a spinal cord injury

Author:

Wu Xiangbing,Liu Jianyun,Li Wei,Khan Mohammad Faizan,Dai Heqiao,Tian Jeremy,Priya Raj,Tian Daniel J.,Wu Wei,Yaacoub Alan,Gu Jun,Syed Fahim,Yu Christopher H.,Gao Xiang,Yu Qigui,Xu Xiao-Ming,Brutkiewicz Randy R.

Abstract

AbstractTissue damage resulting from a spinal cord injury (SCI) is primarily driven by a robust neuroimmune/neuroinflammatory response. This intricate process is mainly governed by a multitude of cytokines and cell surface proteins in the central nervous system (CNS). However, the critical components of the neuroimmune/neuroinflammatory response during SCI are still not well-defined. In this study, we investigated the impact of CD1d, an MHC class I-like molecule mostly known for presenting lipid antigens to natural killer T (NKT) cells and regulating immune/inflammatory responses, on neuroimmune/neuroinflammatory responses induced by SCI. We observed an increased expression of CD1d on various cell types within the spinal cord, including microglia/macrophages, oligodendrocytes (ODCs), and endothelial cells (DCs), but not on neurons or astrocytes post-SCI. In comparison to wildtype (WT) mice, a T10 contusive SCI in CD1d knockout (CD1dKO orCd1d-/-) mice resulted in markedly reduced proinflammatory cytokine release, microglia/macrophage activation and proliferation. Following SCI, the levels of inflammatory cytokines and activation/proliferation of microglia/macrophages were dramatically reduced, while anti-inflammatory cytokines such as IL-4 and growth factors like VEGF were substantially increased in the spinal cord tissues of CD1dKO mice when compared to WT mice. In the post-acute phase of SCI (day 7 post-SCI), CD1dKO mice had a significantly higher frequency of tissue-repairing macrophages, but not other types of immune cells, in the injured spinal cord tissues compared to WT mice. Moreover, CD1d-deficiency protected spinal cord neuronal cells and tissue, promoting functional recovery after a SCI. However, the neuroinflammation in WT mouse spinal cords was independent of the canonical CD1d/NKT cell axis. Finally, treatment of injured mice with a CD1d-specific monoclonal antibody significantly enhanced neuroprotection and improved functional recovery. Therefore, CD1d promotes the proinflammatory response following a SCI and represents a potential therapeutic target for spinal cord repair.Significance StatementThe cell surface molecule, CD1d, is known to be recognized by cells of the immune system. To our knowledge, this is the first observation that the CD1d molecule significantly contributes to neuroinflammation following a spinal cord injury (SCI) in a manner independent of the CD1d/NKT cell axis. This is important, because this work reveals CD1d as a potential therapeutic target following an acute SCI for which there are currently no effective treatments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3