Spatially and Functionally Distinct mTORC1 Entities Orchestrate the Cellular Response to Amino Acid Availability

Author:

Fernandes Stephanie A.ORCID,Angelidaki Danai-DimitraORCID,Nüchel JulianORCID,Pan Jiyoung,Gollwitzer PeterORCID,Elkis YoavORCID,Artoni FilippoORCID,Wilhelm Sabine,Kovacevic-Sarmiento Marija,Demetriades ConstantinosORCID

Abstract

AbstractAmino acid (AA) availability is a robust determinant of cell growth, through controlling mTORC1 activity1. According to the predominant model in the field, AA sufficiency drives the recruitment and activation of mTORC1 on the lysosomal surface by the heterodimeric Rag GTPases, from where it coordinates the majority of cellular processes (reviewed in2,3). Importantly, however, 15 years after its initial discovery, the teleonomy of the proposed lysosomal regulation of mTORC1, and where mTORC1 acts on its effector proteins remain enigmatic4. Here, by using multiple pharmacological and genetic means to perturb the lysosomal AA sensing and protein recycling machineries, we describe the spatial separation of mTORC1 regulation and downstream functions in mammalian cells, with lysosomal and non-lysosomal mTORC1 phosphorylating distinct substrates in response to different AA sources. Moreover, we reveal that a fraction of mTOR localizes at lysosomes due to basal lysosomal proteolysis that locally supplies new AAs, even in cells grown in the presence of extracellular nutrients, whereas cytoplasmic mTORC1 is regulated by exogenous AAs. Overall, our study substantially expands our knowledge about the topology of mTORC1 regulation by AAs, and hints at the existence of distinct, Rag- and lysosome-independent mechanisms that control its activity at other subcellular locations. Given the importance of mTORC1 signalling and AA sensing for human ageing and disease2, our findings will likely open new directions toward the identification of function-specific mTORC1 regulators, and suggest new targets for drug discovery against conditions with dysregulated mTORC1 activity in the future.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3