Slitrk/LAR-RPTP and disease-associated variants control neuronal migration in the developing mouse cortex independently of synaptic organizer activity

Author:

Medvedeva Vera P.,Billuart Pierre,Jeanmart Alice,Vigier Lisa,Ko JaewonORCID,Danglot LydiaORCID,Pierani AlessandraORCID

Abstract

AbstractSlitrks and their ligands LAR-RPTPs are type I transmembrane proteins previously implicated in the etiology of various neuropsychiatric disorders including obsessive-compulsive disorders (OCDs) and schizophrenia. Over the last decade, their functions were extensively studied in hippocampal neuronsin vitroand shown to shape synapse organization. Although both protein families are highly expressed prior to synapse formation, their function in earlier steps of cerebral cortex development remains unknown. Here we investigated the role of Slitrk1, Slitrk2, Slitrk3 and LAR-RPTPs (Ptprs and Ptprd) in the embryonic mouse cortex by acute genetic manipulation usingin uteroelectroporation. All genes, except Slitrk3, promoted specific alterations in radial migration of glutamatergic neurons. Slitrk1 and Slitrk2 overexpression was associated with accumulation of neurons in distinct regions of the cortical plate. Using deletion mutants and a series of Slitrk variants associated with neurodevelopmental disorders (NDDs), we showed that distinct domains are crucial for intracellular Slitrk1 distribution and/or density and shape of VAMP2+presynaptic boutons. Interestingly, bouton alterations did not correlate with the observed migration delays, suggesting that Slitrk1 influence cell migration independently on its synaptogenic function. Furthermore, co-electroporation experiments with LAR-RPTPs, mimicking their co-expression observed by scRNAseq, rescued the migration deficits, suggesting possiblecis-interactions between Slitrks and LAR-RPTPs. Together, these data indicate that in the embryonic cerebral cortex Slitrks and LAR-RPTPs cooperate in consecutive steps of radial migration through distinct mechanisms than in synapse organization and support a relevant role of Slitrk/LAR-RPTP dysfunctions in NDDs at earlier stages of cortical development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3