Distinct Activation Mechanisms of CXCR4 and ACKR3 Revealed by Single-Molecule Analysis of their Conformational Landscapes

Author:

Schafer Christopher T.ORCID,Pauszek Raymond F,Gustavsson Martin,Handel Tracy M.,Millar David P.

Abstract

ABSTRACTCanonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different intracellular effector responses to regulate cell migration: CXCR4 couples to G proteins and arrestins, while ACKR3 is arrestin-biased. CXCR4 also signals only in response to CXCL12, whereas ACKR3 recruits β-arrestin in response to CXCL12, CXCL12 variants, and other peptides and proteins. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we utilized single-molecule FRET. The data revealed that apo CXCR4 preferentially populates a high-FRET inactive state while apo ACKR3 shows little conformational preference, consistent with its promiscuous ligand recognition and propensity for activation. Markedly different conformational landscapes of the receptors in response to ligands suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. The dynamic properties of ACKR3 may also underly its inability to couple to G proteins, making it arrestin-biased.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3