SenPred: A single-cell RNA sequencing-based machine learning pipeline to classify senescent cells for the detection of anin vivosenescent cell burden

Author:

Hughes Bethany K.,Davis Andrew,Milligan Deborah,Wallis Ryan,Philpott Michael P.,Wainwright Linda J.,Gunn David A.,Bishop Cleo L.ORCID

Abstract

AbstractSenescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required for senescent cell identification. However, emerging scRNA-seq datasets have enabled increased understanding of the heterogeneity of senescence. Here we present SenPred, a machine-learning pipeline which can identify senescence based on single-cell transcriptomics. Using scRNA-seq of both 2D and 3D deeply senescent fibroblasts, the model predicts intra-experimental and inter-experimental fibroblast senescence to a high degree of accuracy (>99% true positives). We position this as a proof-of-concept study, with the goal of building a holistic model to detect multiple senescent subtypes. Importantly, utilising scRNA-seq datasets from deeply senescent fibroblasts grown in 3D refines our ML model leading to improved detection of senescent cellsin vivo.This has allowed for detection of anin vivosenescent cell burden, which could have broader implications for the treatment of age-related morbidities.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cellular senescence: Neither irreversible nor reversible;Journal of Experimental Medicine;2024-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3