Perturbation-response analysis ofin silicometabolic dynamics: Hard-coded responsiveness in the cofactors and network sparsity

Author:

Himeoka YusukeORCID,Furusawa ChikaraORCID

Abstract

Homeostasis is a fundamental characteristic of living systems. Unlike rigidity, homeostasis necessitates that systems respond flexibly to diverse environments. Understanding the dynamics of biochemical systems when subjected to perturbations is essential for the development of a quantitative theory of homeostasis. In this study, we analyze the response of bacterial metabolism to externally imposed perturbations using kinetic models ofEscherichia coli’s central carbon metabolism. We found that three distinct kinetic models consistently display strong responses to perturbations; In the strong responses, minor initial discrepancies in metabolite concentrations from steadystate values amplify over time, resulting in significant deviations. This pronounced responsiveness is a characteristic feature of metabolic dynamics, especially since such strong responses are seldom seen in toy models of the metabolic network. Subsequent numerical studies show that adenyl cofactors consistently influence the responsiveness of the metabolic systems across models. Additionally, we examine the impact of network structure on metabolic dynamics, demonstrating that as the metabolic network becomes denser, the perturbation response diminishes—a trend observed commonly in the models. To confirm the significance of cofactors and network structure, we constructed a simplified metabolic network model, underscoring their importance. By identifying the structural determinants of responsiveness, our findings offer implications for bacterial physiology, the evolution of metabolic networks, and the design principles for robust artificial metabolism in synthetic biology and bioengineering.Significance StatementUnderstanding the dynamics of metabolic systems is vital for deciphering cellular functions and their responses to environmental shifts. However, the advancement of dynamic theories for cellular metabolism lags behind its static counterparts. In this study, we delve into the dynamic responses ofEscherichia coli’s central carbon metabolism to perturbations. We found that the response of the cellular metabolism is stronger than that of the random network-based metabolic models. Also, our results highlight the critical role of adenyl cofactor dynamics, such as ATP, and sparse network structure in dictating response strength. These findings carry profound implications across bacterial physiology, evolutionary biology, and synthetic biology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3