Early Real-world Implant Experience with a Helix-fixation Ventricular Leadless Pacemaker

Author:

Nair Devi G.ORCID,Exner Derek V.ORCID,Reddy Vivek Y.ORCID,Badie NimaORCID,Ligon DavidORCID,Miller Marc A.,Lee BridgetORCID,Doty BrandonORCID,Thomaides Athanasios,Eldadah Zayd,Islam Malick,Hadadi Cyrus

Abstract

AbstractBackgroundRoughly 1 in 6 patients receiving conventional transvenous pacemaker systems experience significant complications within 1 year of implant, mainly due to the transvenous lead and subcutaneous pocket. A new helix-fixation single-chamber ventricular leadless pacemaker (LP) system capable of pre-deployment exploratory electrical mapping is commercially available. Such an LP may mitigate complications while streamlining the implantation.ObjectivesEvaluate the initial real-world implant experience of the helix-fixation LP following its commercial release.MethodsIn patients indicated for single-chamber right ventricular pacing, helix-fixation Aveir VR LPs (Abbott, Abbott Park, IL) were implanted using the dedicated loading tool, introducer, and delivery catheter. Implant procedural characteristics, electrical parameters, and any 30-day procedure-related adverse events of consecutive implant attempts were retrospectively evaluated.ResultsA total of 167 patients with Class I indication for permanent pacing received implants in 4 North American centers (57% male, 70 years old). Pre-fixation electrical mapping of potential sites allowed repositioning to be avoided in 95.7% of patients. Median [interquartile range] LP procedure and fluoroscopy durations were 25.5 min [20.0, 35.0] and 5.7 min [4.0, 9.2], respectively. Pacing capture threshold, sensed R-wave amplitude, and impedance were 0.8 V [0.5, 1.3], 9.0 mV [6.0, 12.0], and 705 Ω [550, 910], respectively. Implantation was successful in 98.8% of patients, with 98.2% free from acute adverse events.ConclusionThe initial, real-world experience of the helix-fixation ventricular leadless pacemaker demonstrated safe and efficient implantation with minimal repositioning, viable electrical metrics, and limited acute complications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3