SARS-CoV-2 antibodies cross-react and enhance dengue infection

Author:

Jakhar Kamini,Sonar Sudipta,Singh Gagandeep,Sarkar Tania,Tiwari Mahima,Kaur Jaskaran,Rathore Deepak Kumar,Lal Banwari,Kumar Sandeep,Srivastav Puneet,Kumar Satendra,Phagna Vikas,Kumar Lokesh,Gupta Vishal,Kshetrapal Pallavi,Singh Savita,Wadhwa Nitya,Thiruvengadam Ramachandran,Raghavan Sreevatsan,Gosain Mudita,Shrivastava Tripti,Bhattacharyya Sankar,Bhattacharya Jayanta,Asthana Shailendra,Mani Shailendra

Abstract

AbstractDengue disease is highly prevalent in tropical and subtropical regions worldwide. However, its pathogenesis is still incompletely understood, particularly in comparison to other endemic viruses. Antibody-dependent enhancement (ADE) is a well-known phenomenon for dengue viruses. Given the recent surge in dengue cases and potential cross-reactivity with SARS-CoV-2 antibodies, this study explores the impact of anti-SARS-CoV-2 antibodies on DENV-2 infection.The study assessed the cross-reactivity of SARS-CoV-2 antibodies with the DENV-2 Virus. Human convalescent plasma samples collected during different waves of COVID-19 and monoclonal and polyclonal antibodies raised against SARS-CoV-2 were examined for their potential to cause ADE of DENV-2 infection using cell-based assays. The study found that anti-SARS-CoV-2 antibodies acquired from natural infection in humans or through experimental immunization in animals were cross-reactive with DENV-2 and had the potential to enhance DENV-2 infection in K562 and U937 cells. In-silico and in-vitro studies indicated a strong interaction between SARS-CoV-2 antibodies and DENV-2 E-protein, providing a molecular basis for these findings. This study is the first to demonstrate that anti-SARS-CoV-2 antibodies can cross-react with DENV-2 and can enhance its infection through ADE. These findings have implications for SARS-CoV-2 vaccine development and deployment strategies in regions where dengue is endemic.SummaryAntibodies against SARS-CoV-2 (RBD and Spike) showed significant cross reactivity with DENV-2 (E protein). Also, anti-SARS-CoV-2-commercial antibodies, immunised animal sera and 46 human convalescent plasma samples (from different waves of pandemic) demonstrated antibody-dependent enhancement (ADE) of DENV-2 infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3