Single-cell Transcriptional Analysis of the Cellular Immune Response in the Oral Mucosa of Mice

Author:

Cantalupo P,Diacou A,Park S,Soman V,Chen J,Glenn D,Chandran U,Clark D

Abstract

AbstractPeriodontal health is dependent on a symbiotic relationship of the host immune response with the oral microbiota. Pathologic shifts of the microbial plaque elicit an immune response that eventually leads to the recruitment and activation of osteoclasts and matrix metalloproteinases and the eventual tissue destruction that is evident in periodontal disease. Once the microbial stimulus is removed, an active process of inflammatory resolution begins. The goal of this work was to use scRNAseq to demonstrate the unique cellular immune response across three distinct conditions of periodontal health, disease, and resolution using mouse models. Periodontal disease was induced using a ligature model. Resolution was modeled by removing the ligature and allowing the mouse to recover. Immune cells (Cd45+) were isolated from the periodontium and analyzed via scRNAseq. Gene signature shifts across the three conditions were characterized and shown to be largely driven by macrophage and neutrophils during the periodontal disease and resolution conditions. Resolution of periodontal disease was characterized by the differential regulation of unique gene subsets. Clustering analysis characterized multiple cellular subpopulations within B Cells, macrophages, and neutrophils that demonstrated differential expansion and contraction across conditions of periodontal health, disease, and resolution. Interestingly, we identified a transcriptionally distinct macrophage subpopulation that expanded during the resolution condition and demonstrated an immunoregulatory gene signature. We identified a cell surface marker for this resolution-associated macrophage subgroup (Cd74) and validated the expansion of this subgroup during resolution via flow cytometry. This work presents a robust immune cell atlas for study of the immunological changes in the oral mucosa during three distinct conditions of periodontal health, disease, and resolution and it improves our understanding of the cellular and molecular markers that characterize health from disease for the development of future diagnostics and therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3