Addressing Label Noise for Electronic Health Records: Insights from Computer Vision for Tabular Data

Author:

Yang JennyORCID,Triendl Hagen,Soltan Andrew A. S.,Prakash Mangal,Clifton David A.

Abstract

AbstractThe analysis of extensive electronic health records (EHR) datasets often calls for automated solutions, with machine learning (ML) techniques, including deep learning (DL), taking a lead role. One common task involves categorizing EHR data into predefined groups. However, the vulnerability of EHRs to noise and errors stemming from data collection processes, as well as potential human labeling errors, poses a significant risk. This risk is particularly prominent during the training of DL models, where the possibility of overfitting to noisy labels can have serious repercussions in healthcare. Despite the well-documented existence of label noise in EHR data, few studies have tackled this challenge within the EHR domain. Our work addresses this gap by adapting computer vision (CV) algorithms to mitigate the impact of label noise in DL models trained on EHR data. Notably, it remains uncertain whether CV methods, when applied to the EHR domain, will prove effective, given the substantial divergence between the two domains. We present empirical evidence demonstrating that these methods, whether used individually or in combination, can substantially enhance model performance when applied to EHR data, especially in the presence of noisy/incorrect labels. We validate our methods and underscore their practical utility in real-world EHR data, specifically in the context of COVID-19 diagnosis. Our study highlights the effectiveness of CV methods in the EHR domain, making a valuable contribution to the advancement of healthcare analytics and research.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3