DeMixSC: a deconvolution framework that uses single-cell sequencing plus a small benchmark dataset for improved analysis of cell-type ratios in complex tissue samples

Author:

Guo Shuai,Liu Xiaoqian,Cheng Xuesen,Jiang Yujie,Ji Shuangxi,Liang Qingnan,Koval Andrew,Li Yumei,Owen Leah A.,Kim Ivana K.,Aparicio Ana,Shen John Paul,Kopetz Scott,Weinstein John N.,DeAngelis Margaret M.,Chen Rui,Wang WenyiORCID

Abstract

AbstractBulk deconvolution with single-cell/nucleus RNA-seq data is critical for understanding heterogeneity in complex biological samples, yet the technological discrepancy across sequencing platforms limits deconvolution accuracy. To address this, we introduce an experimental design to match inter-platform biological signals, hence revealing the technological discrepancy, and then develop a deconvolution framework called DeMixSC using the better-matched, i.e., benchmark, data. Built upon a novel weighted nonnegative least-squares framework, DeMixSC identifies and adjusts genes with high technological discrepancy and aligns the benchmark data with large patient cohorts of matched-tissue-type for large-scale deconvolution. Our results using a benchmark dataset of healthy retinas suggest much-improved deconvolution accuracy. Further analysis of a cohort of 453 patients with age-related macular degeneration supports the broad applicability of DeMixSC. Our findings reveal the impact of technological discrepancy on deconvolution performance and underscore the importance of a well-matched dataset to resolve this challenge. The developed DeMixSC framework is generally applicable for deconvolving large cohorts of disease tissues, and potentially cancer.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. A roadmap for the Human Developmental Cell Atlas

2. Understanding tumour endothelial cell heterogeneity and function from single-cell omics;Nature Reviews Cancer,2023

3. Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy;Nature Reviews Clinical Oncology,2020

4. From bulk, single-cell to spatial RNA sequencing;Investigative Ophthalmology & Visual Science,2021

5. RNA sequencing: the teenage years;Nature Reviews Genetics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3