TheStaphylococcus aureusregulatory program in a human skin-like environment

Author:

Costa Flavia G.,Mills Krista B.ORCID,Crosby Heidi A.,Horswill Alexander R.ORCID

Abstract

AbstractStaphylococcus aureusis a Gram-positive pathogen responsible for the majority of skin and soft tissue infections (SSTIs).S. aureuscolonizes the anterior nares of approximately 20-30% of the population and transiently colonizes the skin, thereby increasing the risk of developing SSTIs and more serious infections. Current laboratory models that mimic the skin surface environment are expensive, require substantial infrastructure, and limit the scope of bacterial physiology studies under human skin conditions. To overcome these limitations, we developed a cost-effective, open-source, chemically defined media recipe termed skin-like media (SLM) that incorporates key aspects of the human skin surface environment and supports growth of several Staphylococcal species. We utilized SLM to investigate the transcriptional response of methicillin-resistantS. aureus(MRSA) following growth in SLM compared to a commonly used laboratory media. Through RNA-seq analysis, we observed the upregulation of several virulence factors, including genes encoding functions involved in adhesion, proteolysis, and cytotoxicity. To further explore these findings, we conducted qRT-PCR experiments to determine the influence of media composition, pH, and temperature on the transcriptional response of key factors involved in adhesion and virulence. We also demonstrated that MRSA primed in SLM adhered better to human corneocytes and demonstrated adhesin-specific phenotypes that previously required genetic manipulation. These results support the potential utility of SLM as anin vitromodel for assessing Staphylococcal physiology and metabolism on human skin.ImportanceStaphylococcus aureusis the major cause of skin diseases, and its increased prevalence in skin colonization and infections present a need to understand its physiology in this environment. The work presented here outlinesS. aureusupregulation of colonization and virulence factors using a newly developed media that strives to replicate the human skin surface environment, and demonstrates roles for adhesins ClfA, SraP, and Fnbps in human corneocyte adherence.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3