Opposing transcriptional mechanisms regulateToxoplasmadevelopment

Author:

Hong Dong-Pyo,Radke Joshua B.,White Michael W.

Abstract

ABSTRACTTheToxoplasmabiology that underlies human chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite stage. We investigated the role of two alkaline-stress induced ApiAP2 transcription factors, AP2IV-3 and AP2IX-9, in bradyzoite development. These factors were expressed in two overlapping waves during bradyzoite development with AP2IX-9 increasing expression earlier than AP2IV-3, which peaked as AP2IX-9 expression was declining. Disruption of the AP2IX-9 gene enhanced, while deletion of AP2IV-3 gene decreased tissue cyst formation demonstrating these factors have opposite functions in bradyzoite development. Conversely, conditional overexpression of FKBP-modified of AP2IX-9 or AP2IV-3 with the small molecule Shield 1 had a reciprocal effect on tissue cyst formation confirming the conclusions of the knockout experiments. The AP2IX-9 repressor and AP2IV-3 activator tissue cyst phenotypes were borne out in gene expression studies that determined many of the same bradyzoite genes were regulated in an opposite manner by these transcription factors. A common gene target was the canonical bradyzoite marker, BAG1, and mechanistic experiments determined that like AP2IX-9, AP2IV-3 regulates a BAG1 promoter-luciferase reporter and specific binds the BAG1 promoter in parasite chromatin. Altogether, these results suggest the AP2IX-9 transcriptional repressor and AP2IV-3 transcriptional activator likely compete to control bradyzoite gene expression, which may permitToxoplasmato better adapt to different tissue environments and select a suitable host cell for long term survival of the dormant tissue cyst.IMPORTANCEToxoplasmainfections are life-long due to the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control formation of the tissue cyst is still poorly understood. Significant changes in gene expression are associated with tissue cyst development and ApiAP2 transcription factors are an important mechanism regulating this developmental transcriptome. However, the molecular composition of these ApiAP2 mechanisms are not well defined and the operating principles of ApiAP2 mechanisms are poorly understood. Here we establish that competing ApiAP2 transcriptional mechanisms operate to regulate this clinically important developmental pathway.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3