Approach to insect wing shape and deformation field measurement

Author:

Yin Duo,Wei Zhen,Wang Zeyu

Abstract

Summary StatementA fine shape and deformation field measurement of insect wing is achieved by a self-developed setup. This measurement could foster investigation of insect wing stiffness distribution.AbstractFor measuring the shape and deformation of insect wing, a scanning setup adopting line laser and coaxial LED light is developed. Wing shape can be directly acquired from the line laser images by triangulation. Yet the wing deformation field can also be obtained by a self-devised algorithm that processes the images from line laser and coaxial LED simultaneously. During the experiment, three wing samples from termite and mosquito under concentrated force are scanned. The venation and corrugation could be significantly identified from shape measurement result. The deformation field is sufficiently accurate to demonstrate its variation from wing base to tip. The load conditions in experiments are also be discussed. For softer wings, local deformation is apparent if pinhead is employed to impose force. The similarity analysis is better than 5% deformation ratio as a static criterion, if the wing is simplified as a cantilever beam. The setup is proved to be effective and versatile. The shape and deformation fields would give enough details for the measurement of wing stiffness distribution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3