‘Switch-like’ transition from random to directed motility of microtubules by a yeast dynein

Author:

Jain K.,Khetan N.,Athale C. A.

Abstract

AbstractProcessive transport by multiple molecular motors that step stochastically, requires a form of mechanical coupling. In a quantitative microtubule (MT) gliding assay with yeast cytoplasmic dynein, we investigate the nature of this coupling by examining the effect of MT length and motor density on transport. We find speed and velocity have a length dependence for low motor numbers, but are independent of MT length for high motor densities. The dependence of speed, velocity and degree of randomness of MT transport is best understood when evaluated in terms of the numbers of motors bound to a filament. A model of collective transport of MTs, based on stochastic stepping and asymmetric detachment rates, reproduces the experimental trends of decreasing diffusivity with increasing number of motors. Additionally, the model predicts a ‘switch-like’ increase in directionality of MT transport above a threshold number of motors. Such a rapid transition from random to directed motility with increasing numbers of yeast dyneins, could play a role in vivo during mitosis in the ‘search and orientation’ of the Saccharomyces cerevisiae nucleus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3