Layered structure and complex mechanochemistry of a strong bacterial adhesive

Author:

Hernando-Pérez Mercedes,Setayeshgar Sima,Hou Yifeng,Temam Roger,Brun Yves V,Dragnea Bogdan,Berne Cécile

Abstract

AbstractWhile designing adhesives that perform in aqueous environments has proven challenging for synthetic adhesives, microorganisms commonly produce bioadhesives that efficiently attach to a variety of substrates, including wet surfaces that remain a challenge for industrial adhesives. The aquatic bacteriumCaulobacter crescentususes a discrete polar polysaccharide complex, the holdfast, to strongly attach to surfaces and resist flow. The holdfast is extremely versatile and has an impressive adhesive strength. Here, we use atomic force microscopy (AFM) to unravel the complex structure of the holdfast and characterize its chemical constituents and their role in adhesion. We used purified holdfasts to dissect the intrinsic properties of this component as a biomaterial, without the effect of the bacterial cell body. Our data support a model where the holdfast is a heterogeneous material composed of two layers: a stiff nanoscopic core, covered by a sparse, flexible brush layer. These two layers contain not onlyN-acetyl-D-glucosamine (NAG), the only yet identified component present in the holdfast, but also peptides and DNA, which provide structure and adhesive character. Biochemical experiments suggest that, while polypeptides are the most important components for adhesive force, the presence of DNA mainly impacts the brush layer and initial adhesion, and NAG plays a primarily structural role within the core. Moreover, our results suggest that holdfast matures structurally, becoming more homogeneous over time. The unanticipated complexity of both the structure and composition of the holdfast likely underlies its distinctive strength as a wet adhesive and could inform the development of a versatile new family of adhesives.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3