Translatomic database of cortical astroglia across male and female mouse development reveals two distinct developmental phenotypes

Author:

Rurak Gareth M.,Simard Stephanie,Charih François,Van Geel Amanda,Stead John,Woodside Barbara,Green James R.,Coppola Gianfilippo,Salmaso Natalina

Abstract

AbstractAstroglial cells are emerging as key players in the development and homeostatic maintenance of neurons and neuronal networks. Astroglial cell functions are critical to neuronal migration and maturation, myelination, and synapse dynamics, however little is known about astroglial phenotypic changes over development. Furthermore, astroglial cells express steroid hormone receptors and show rapid responses to hormonal manipulations, however, despite important sex differences in telencephalic regions such as the cortex and hippocampus few studies have examined sex differences in astroglial cells in development and outside of the hypothalamus and amygdala. To phenotype cortical astroglial cells across postnatal development while considering potential sex differences, we used translating ribosome affinity purification together with RNA sequencing (TRAPseq) and immunohistochemistry to phenotype the entire astroglial translatome in males and females at key developmental time points: P1, P4, P7, P14, P35 and in adulthood. Overall, we found two distinct astroglial phenotypes between early (P1-P7) and late development (P14-Adult). We also noted that although astroglia show few basal sex differences in adulthood, they show significant sex differences in developmental gene expression patterns, with peak sex differences observed at P7. At least part of the sex differences observed at P7 appear to be due to males reaching a more mature astroglial phenotype earlier than females. Together, these data clearly delineate and phenotype astroglia across development and identify sex differences in astroglial developmental programs. Importantly, these developmental sex differences could have an impact on the construction and maintenance of neuronal networks and potential developmental windows of vulnerability to neurologic and psychiatric disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3