Cycle-by-cycle analysis of neural oscillations

Author:

Cole ScottORCID,Voytek BradleyORCID

Abstract

SummaryNeural oscillations are widely studied using methods based on the Fourier transform, which models data as sums of sinusoids. For decades these Fourier-based approaches have successfully uncovered links between oscillations and cognition or disease. However, because of the fundamental sinusoidal basis, these methods might not fully capture neural oscillatory dynamics, because neural data are both nonsinusoidal and non-stationary. Here, we present a new analysis framework, complementary to Fourier analysis, that quantifies cycle-by-cycle time-domain features. For each cycle, the amplitude, period, and waveform symmetry are measured, the latter of which is missed using conventional approaches. Additionally, oscillatory bursts are algorithmically identified, allowing us to investigate the variability of oscillatory features within and between bursts. This approach is validated on simulated noisy signals with oscillatory bursts and outperforms conventional metrics. Further, these methods are applied to real data—including hippocampal theta, motor cortical beta, and visual cortical alpha—and can differentiate behavioral conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3