Two spatially distinct posterior alpha sources fulfill different functional roles in attention

Author:

Sokoliuk R.ORCID,Mayhew S.D.,Aquino K.M.ORCID,Wilson R.,Brookes M.J.,Francis S.T.,Hanslmayr S.,Mullinger K.J.

Abstract

ABSTRACTDirecting attention helps to extract relevant information and suppress distracters. Alpha brain oscillations (8-12Hz) play a fundamental role in this process, with a power decrease facilitating processing of important information and power increase inhibiting brain regions processing irrelevant information. Evidence for this phenomenon arises from visual attention studies (Worden et al., 2000), however, the effect also exists in other modalities, including the somatosensory system (Haegens et al., 2011) and inter-sensory attention tasks (Foxe and Snyder, 2011). We investigated what happens when attention is divided between two modalities using both a multi- and unimodal attention paradigm while recording EEG over 128 scalp electrodes in two separate experiments. In Experiment 1 participants divided their attention between the visual and somatosensory modality to determine the temporal or spatial frequency of a target stimulus (vibrotactile stimulus or Gabor grating). In Experiment 2, participants divided attention between two visual hemifields to identify the orientation of a target Gabor grating. In both experiments, pre-stimulus alpha power in visual areas decreased linearly with increasing attention to visual stimuli. In contrast, alpha power in parietal areas showed lower pre-stimulus alpha power when attention was divided between modalities, compared to unimodal attention. These results suggest that there are two different alpha sources, where one reflects the ‘visual spotlight of attention’ and the other reflects attentional effort. To our knowledge, this is the first study to show that attention recruits two spatially distinct alpha sources in occipital and parietal brain regions, which act simultaneously but serve different functions in attention.SIGNIFICANCE STATEMENTAttention to one spatial location/sensory modality leads to power changes of alpha oscillations (~10Hz) with decreased power over regions processing relevant information and power increases to actively inhibit areas processing ‘to-be-ignored’ information. Here, we used detailed source modelling to investigate EEG data recorded during separate uni-modal (visual) and multi- (visual and somatosensory) attention tasks. Participants either focused their attention on one modality/spatial location or directed it to both. We show for the first time two distinct alpha sources are active simultaneously but play different roles. A sensory (visual) alpha source was linearly modulated by attention representing the ‘visual spotlight of attention’. In contrast, a parietal alpha source was modulated by attentional effort, showing lowest alpha power when attention was divided.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3