Abstract
AbstractSpatial cells of the hippocampal formation are embedded in networks of theta cells. The septal theta rhythm (6–10 Hz) organizes the spatial activity of place and grid cells in time, but it remains unclear how spatial reference points organize the temporal activity of theta cells in space. We study spatial theta cells in simulations and single-unit recordings from exploring rats to ask whether temporal phase codes may anchor spatial representations to the outside world. We theorize that an experience-independent mechanism for temporal coding may combine with burst synchronization to continuously calibrate self-motion to allocentric reference frames. Subcortical recordings revealed spatial theta cells with strong rate-phase correlations related to distinct theta phases. Simulations of bursting neurons and networks explained that relationship and, with competitive learning, demonstrated flexible spatial synchronization patterns when driven by low-dimensional spatial components from the recording data. Thus temporal coding synchrony may reconcile extrinsic and intrinsic neural codes.
Publisher
Cold Spring Harbor Laboratory