Comparative transcriptomics reveal distinct patterns of gene expression conservation through vertebrate embryogenesis

Author:

Chan Megan E.,Bhamidipati Pranav S.,Goldsby Heather J.,Hintze ArendORCID,Hofmann Hans A.ORCID,Young Rebecca L.ORCID

Abstract

AbstractDespite life’s diversity, studies of variation across animals often remind us of our shared evolutionary past. Abundant genome sequencing over the last ~25 years reveals remarkable conservation of genes and recent analyses of gene regulatory networks illustrate that not only genes but entire pathways are conserved, reused, and elaborated in the evolution of diversity. Predating these discoveries, 19th-century embryologists observed that though morphology at birth varies tremendously, certain stages of embryogenesis appear remarkably similar across vertebrates. Specifically, while early and late stages are variable across species, anatomy of mid-stages embryos (the ‘phylotypic’ stage) is conserved. This model of vertebrate development and diversification has found mixed support in recent analyses comparing gene expression across species possibly owing to differences across studies in species, embryonic stages, and gene sets compared. Here we perform a comparative analysis using 186 microarray and RNA-seq expression data sets covering embryogenesis in six vertebrate species spanning ~420 million years of evolution. We use an unbiased clustering approach to group stages of embryogenesis by transcriptomic similarity and ask whether gene expression similarity of clustered embryonic stages deviates from the null hypothesis of no relationship between timing and diversification. We use a phylogenetic comparative approach to characterize expression conservation pattern (i.e., early conservation, hourglass, inverse hourglass, late conservation, or no relationship) of each gene at each evolutionary node. Across vertebrates, we find an enrichment of genes exhibiting early conservation, hourglass, late conservation patterns and a large depletion of gene exhibiting no distinguishable pattern of conservation in both microarray and RNA-seq data sets. Enrichment of genes showing patterned conservation through embryogenesis indicates diversification of embryogenesis may be temporally constrained. However, the circumstances (e.g., gene groups, evolutionary nodes, species) under which each pattern emerges remain unknown and require both broad evolutionary sampling and systematic examination of embryogenesis across species.

Publisher

Cold Spring Harbor Laboratory

Reference73 articles.

1. Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

2. von Baer, K.E. 1828. Uber Entwickelungsgeschichte der Thiere (Königsberg: Bornträger).

3. Problems of Gastrulation: Real and Verbal

4. Ballard, W.W. 1981. Morphogenetic movements and fate maps of vertebrates. Am Zool 21:.

5. de Beer, G. 1971. Homology, An Unsolved Problem, Volume 11 (Oxford: Oxford University Press).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3