Capturing Protein-Ligand Recognition Pathways in Coarse-grained Simulation

Author:

Dandekar Bhupendra R.,Mondal Jagannath

Abstract

AbstractProtein-substrate recognition is highly dynamic and complex process in nature. A key approach in deciphering the mechanism underlying the recognition process is to capture the kinetic process of substrate in its act of binding to its designated protein cavity. Towards this end, microsecond long atomistic molecular dynamics (MD) simulation has recently emerged as a popular method of choice, due its ability to record these events at high spatial and temporal resolution. However, success in this approach comes at an exorbitant computational cost. Here we demonstrate that coarse grained models of protein, when systematically optimised to maintain its tertiary fold, can capture the complete process of spontaneous protein-ligand binding from bulk media to cavity, within orders of magnitude shorter wall clock time compared to that of all-atom MD simulations. The simulated and crystallographic binding pose are in excellent agreement. We find that the exhaustive sampling of ligand exploration in protein and solvent, harnessed by coarse-grained simulation at a frugal computational cost, in combination with Markov state modelling, leads to clearer mechanistic insights and discovery of novel recognition pathways. The result is successfully validated against three popular protein-ligand systems. Overall, the approach provides an affordable and attractive alternative of all-atom simulation and promises a way-forward for replacing traditional docking based small molecule discovery by high-throughput coarse-grained simulation for searching potential binding site and allosteric sites. This also provides practical avenues for first-hand exploration of bio-molecular recognition processes in large-scale biological systems, otherwise inaccessible in all-atom simulations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3