Knotted artifacts in predicted 3D RNA structures

Author:

Gren Bartosz A.ORCID,Antczak MaciejORCID,Zok TomaszORCID,Sulkowska Joanna I.,Szachniuk MartaORCID

Abstract

AbstractUnlike proteins, RNAs deposited in the Protein Data Bank do not contain topological knots. Recently, admittedly, the first trefoil knot and some lasso-type conformations have been found in experimental RNA structures, but these are still exceptional cases. Meanwhile, algorithms predicting 3D RNA models have happened to form knotted structures not so rarely. Interestingly, machine learning-based predictors seem to be more prone to generate knotted RNA folds than traditional methods. A similar situation is observed for the entanglements of structural elements. In this paper, we analyze all models submitted to the CASP15 competition in the 3D RNA structure prediction category. We show what types of topological knots and structure element entanglements appear in the submitted models and highlight what methods are behind the generation of such conformations. We also study the structural aspect of susceptibility to entanglement. We suggest that predictors take care of an evaluation of RNA models to avoid publishing structures with artifacts, such as unusual entanglements, that result from hallucinations of predictive algorithms.Author summary3D RNA structure prediction contests such as CASP and RNA-Puzzles lack measures for topology-wise evaluation of predicted models. Thus, predictors happen to submit potentially inappropriate conformations, for example, containing entanglements that are prediction artifacts.Automated identification of entanglements in 3D RNA structures is computationally hard. Distinguishing correct from incorrectly entangled conformations is not trivial and often requires expert knowledge.We analyzed 3D RNA models submitted to CASP15 and found that all entanglements in these models are artifacts.Compared to non-ML, machine learning-based methods are more prone to generating entanglements that are not present in natural RNAs.To increase the reliability of 3D RNA structure prediction, it is necessary to reject abnormally entangled structures in the modeling stage.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3