Rapid differentiation of estrogen receptor status in patient biopsy breast cancer aspirates with an optical nanosensor

Author:

Gaikwad Pooja V.,Rahman Nazifa,Ghosh Pratyusha,Ng Dianna,Williams Ryan M.ORCID

Abstract

AbstractBreast cancer is a substantial source of morbidity and mortality worldwide. It is particularly more difficult to treat at later stages, and treatment regimens depend heavily on both staging and the molecular subtype of the tumor. However, both detection and molecular analyses rely on standard imaging and histological method, which are costly, time-consuming, and lack necessary sensitivity/specificity. The estrogen receptor (ER) is, along with the progesterone receptor (PR) and human epidermal growth factor (HER-2), among the primary molecular markers which inform treatment. Patients who are negative for all three markers (triple negative breast cancer, TNBC), have fewer treatment options and a poorer prognosis. Therapeutics for ER+ patients are effective at preventing disease progression, though it is necessary to improve the speed of subtyping and distribution of rapid detection methods. In this work, we designed a near-infrared optical nanosensor using single-walled carbon nanotubes (SWCNT) as the transducer and an anti-ERα antibody as the recognition element. The nanosensor was evaluated for its response to recombinant ERα in buffer and serum prior to evaluation with ER- and ER+ immortal cell lines. We then used a minimal volume of just 10 µL from 26 breast cancer biopsy samples which were aspirated to mimic fine needle aspirates. 20 samples were ER+, while 6 were ER-, representing 13 unique patients. We evaluated the potential of the nanosensor by investigating several SWCNT chiralities through direct incubation or fractionation deployment methods. We found that the nanosensor can differentiate ER-from ER+ patient biopsies through a shift in its center wavelength upon sample addition. This was true regardless of which of the three SWCNT chiralities we observed. Receiver operating characteristic area under the curve analyses determined that the strongest classifier with an AUC of 0.94 was the (7,5) chirality after direct incubation and measurement, and without further processing. We anticipate that further testing and development of this nanosensor may push its utility toward field-deployable, rapid ER subtyping with potential for additional molecular marker profiling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3