A deep profile of gene expression across 18 human cancers

Author:

Qiu Wei,Dincer Ayse B.,Janizek Joseph D.,Celik Safiye,Pittet Mikael,Naxerova Kamila,Lee Su-In

Abstract

AbstractClinically and biologically valuable information may reside untapped in large cancer gene expression data sets. Deep unsupervised learning has the potential to extract this information with unprecedented efficacy but has thus far been hampered by a lack of biological interpretability and robustness. Here, we present DeepProfile, a comprehensive framework that addresses current challenges in applying unsupervised deep learning to gene expression profiles. We use DeepProfile to learn low-dimensional latent spaces for 18 human cancers from 50,211 transcriptomes. DeepProfile outperforms existing dimensionality reduction methods with respect to biological interpretability. Using DeepProfile interpretability methods, we show that genes that are universally important in defining the latent spaces across all cancer types control immune cell activation, while cancer type-specific genes and pathways define molecular disease subtypes. By linking DeepProfile latent variables to secondary tumor characteristics, we discover that tumor mutation burden is closely associated with the expression of cell cycle-related genes. DNA mismatch repair and MHC class II antigen presentation pathway expression, on the other hand, are consistently associated with patient survival. We validate these results through Kaplan-Meier analyses and nominate tumor-associated macrophages as an important source of survival-correlated MHC class II transcripts. Our results illustrate the power of unsupervised deep learning for discovery of novel cancer biology from existing gene expression data.

Publisher

Cold Spring Harbor Laboratory

Reference80 articles.

1. Higgins, I. et al. Β-VAE: Learning basic visual concepts with a constrained variational framework. 5th Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc. 1–13 (2019).

2. Gulrajani, I. et al. Pixelvae: A latent variable model for natural images. 5th Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc. 1–9 (2017).

3. Higgins, I. , et al. Early Visual Concept Learning with Unsupervised Deep Learning. (2016).

4. Representation Learning: A Review and New Perspectives

5. Deep generative modeling for single-cell transcriptomics;Nat. Methods,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3