An unsupervised deep learning framework encodes super-resolved image features to decode bacterial cell cycle

Author:

Griffié Juliette,Zhang ChenORCID,Denereaz Julien,Pham Thanh-An,Weissbart Gauthier,Sieben Christian,Lambert Ambroise,Veening Jan-WillemORCID,Manley Suliana

Abstract

AbstractSuper-resolution microscopy can resolve cellular features at the nanoscale. However, increased spatial resolution comes with increased phototoxicity, and reduced temporal resolution. As a result, studies that require the highest spatial resolutions often rely on static or fixed images, lacking dynamic information. This is particularly true of bacteria, whose lateral dimensions approach the scale of the diffraction limit. In this work, we present Enso, a method based on unsupervised machine learning to recover bacterial cell cycle and cell type information from static single molecule localization microscopy (SMLM) images, whilst retaining nanoscale spatial resolution. Enso uses single-cell images as input, and orders cells according to their spatial pattern progression, ultimately linked to the cell cycle. Our method requires noa prioriknowledge or categories, and is validated on both simulated and user-annotated experimental data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3