Disentangling mechanisms behind the pleiotropic effects of proximal 16p11.2 BP4-5 CNVs

Author:

Auwerx ChiaraORCID,Moix SamuelORCID,Kutalik ZoltánORCID,Reymond AlexandreORCID

Abstract

AbstractWhereas 16p11.2 BP4-5 copy-number variants (CNVs) represent one of the most pleiotropic etiologies of genomic syndromes in both clinical and population cohorts, the mechanisms leading to such pleiotropy remain understudied. Identifying 73 deletion and 89 duplication carriers among unrelated white British UK Biobank participants, we performed a phenome-wide association study between the region’s copy number and 117 complex traits and diseases, mimicking four dosage models. Forty-six phenotypes (39%) were affected by 16p11.2 BP4-5 CNVs, with the deletion-only, mirror, U-shape, and duplication-only models being the best fit for thirty, ten, four, and two phenotypes, respectively, aligning with the stronger deleteriousness of the deletion. Upon individually adjusting CNV effects for either body mass index (BMI), height, cognitive function, or socio-economic status as potential mediators, we found that sixteen testable deletion-driven associations (61%) – primarily with cardiovascular and metabolic traits – were BMI-dependent, with other mediators playing a more subtle role. Bidirectional Mendelian randomization supported that 13 out of these 16 associations (81%) were secondary consequences of the CNV’s impact on BMI. For the 22 traits that remained significantly associated upon individual adjustment for mediators, matched-control analyses found that eleven phenotypes, including musculoskeletal traits, liver enzymes, fluid intelligence, platelet count, pulmonary capacity, pneumonia, and acute kidney injury, remained associated under strict Bonferroni correction, with eight additional nominally significant associations. These results paint a complex picture of 16p11.2 BP4-5’s pleiotropic pattern that involves direct effects on multiple physiological systems and indirect co-morbidities consequential to the CNV’s impact on BMI and cognition, acting through trait-specific dosage mechanisms.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3