Collective anti-predator escape manoeuvres through optimal attack and avoidance strategies

Author:

Bartashevich PalinaORCID,Herbert-Read James E.ORCID,Hansen Matthew J.,Dhellemmes Félicie,Domenici Paolo,Krause Jens,Romanczuk PawelORCID

Abstract

AbstractThe collective dynamics of self-organised systems emerge from the decision rules agents use to respond to each other and to external forces. This is evident in groups of animals under attack from predators, where understanding collective escape patterns requires evaluating the risks and rewards associated with particular social rules, prey escape behaviour, and predator attack strategies. Here, we find that the emergence of the ‘fountain effect’, a common collective pattern observed when animal groups evade predators, is the outcome of rules designed to maximise individual survival chances given predator hunting decisions. Using drone-based empirical observations of schooling sardine prey (Sardinops sagax caerulea) attacked by striped marlin (Kajikia audax), we first find the majority of attacks produce fountain effects, with the dynamics of these escapes dependent on the predator’s attack direction. Then, using a spatially-explicit agent-based model of predator-prey dynamics, we show that fountain manoeuvres can emerge from combining an optimal individual prey escape angle with social interactions. The escape rule appears to prioritise maximising the distance to the predator and creates conflict in the effectiveness of predators’ attacks and the prey’s avoidance, explaining the empirically observed predators’ attack strategies and the fountain evasions produced by prey. Overall, we identify the proximate and ultimate explanations for fountain effects and more generally highlight that the collective patterns of self-organised predatory-prey systems can be understood by considering both social escape rules and attack strategies.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3