Contribution of the Type 6 Secretion System to Apoptosis and Macrophage Polarization DuringBurkholderia pseudomalleiInfection

Author:

Stockton Jacob L.,Khakhum Nittaya,Torres Alfredo G.ORCID

Abstract

AbstractBurkholderia pseudomallei(Bpm) is the causative agent of the disease melioidosis. As a facultative intracellular pathogen,Bpmhas a complex lifestyle that culminates in cell-to-cell fusion and multinucleated giant cells (MNGCs) formation. The virulence factor responsible for MNGC formation is the type 6 secretion system (T6SS), a contractile nanomachine. MNGC formation is a cell-to-cell spread strategy that allows the bacteria to avoid the extracellular immune system and our previous data highlighted cell death, apoptosis, and inflammation as pathways significantly impacted by T6SS activity. Thusly, we investigated how the T6SS influences these phenotypes within the macrophage and pulmonary models of infection. Here we report that the T6SS is responsible for exacerbating apoptotic cell death during infection in both macrophages and the lungs of infected mice. We also demonstrate that although the T6SS does not influence differential macrophage polarization, the M2 polarization observed is potentially beneficial forBpmpathogenesis and replication. Finally, we show that the T6SS contributes to the severity of inflammatory nodule formation in the lungs, which might be potentially connected to the amount of apoptosis that is triggered by the bacteria.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3