Conformal prediction of molecule-induced cancer cell growth inhibition challenged by strong distribution shifts

Author:

Hernandez-Hernandez Saiveth,Guo Qianrong,Ballester Pedro J.

Abstract

AbstractThe drug discovery process often employs phenotypic and target-based virtual screening to identify potential drug candidates. Despite the longstanding dominance of target-based approaches, phenotypic virtual screening is undergoing a resurgence due to its potential being now better understood. In the context of cancer cell lines, a well-established experimental system for phenotypic screens, molecules are tested to identify their whole-cell activity, as summarized by their half-maximal inhibitory concentrations. Machine learning has emerged as a potent tool for computationally guiding such screens, yet important research gaps persist. Consequently, this study focuses on the application of Conformal Prediction (CP) to predict the activities of novel molecules on specific cancer cell lines. Two CP models were constructed and evaluated on each cell line, resulting in a total of 120 performance evaluations (60 cell lines x 2 CP models) per training-test partition. From this comprehensive evaluation, we concluded that, regardless of the cell line or model, novel molecules with smaller CP-calculated confidence intervals tend to have smaller predicted errors once measured activities are revealed. It was also possible to anticipate the activities of dissimilar test molecules across 50 or more cell lines. These outcomes demonstrate the robust efficacy that CP models can achieve in realistic and challenging scenarios, thereby providing valuable insights for enhancing decision-making processes in drug discovery.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3