Experimental evolution of a reduced bacterial chemotaxis network

Author:

Kargeti Manika,Kalita Irina,Hoch Sarah,Ratnikava Maryia,Xu Wenhao,Ni Bin,Dy Ron Leonard,Colin RemyORCID,Sourjik Victor

Abstract

AbstractChemotaxis allows bacteria to follow chemical gradients by comparing their environment over time and adjusting their swimming behavior accordingly. The chemotaxis signaling pathway is highly conserved among all chemotactic bacteria. The system comprises two modules: one for environmental sensing and signal transduction toward the flagellar motor, and the other for adapting to the constant level of background stimulation and providing short-term memory for temporal comparisons. Previous experimental analysis and mathematical modeling have suggested that all components of the paradigmatic chemotaxis pathways inEscherichia coliare essential. This indicates that it may contain a minimal set of protein components necessary to mediate gradient sensing and behavioral response. To test this assumption, here we subjected strains carrying deletions in chemotaxis genes to experimental laboratory evolution. We observed that the core components of the chemotaxis pathway are indeed essential. However, the absence of individual auxiliary pathway proteins, including the adaptation enzymes that are conserved in a vast majority of bacteria, and the phosphatase, could be compensated for to varying degrees by changes in other pathway components. Our results suggest that the experimental evolution of these deletion strains has led to the emergence of alternative strategies for bacterial chemotaxis, demonstrating the surprisingly rapid evolvability of this signaling network.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3