Abstract
AbstractChemotaxis allows bacteria to follow chemical gradients by comparing their environment over time and adjusting their swimming behavior accordingly. The chemotaxis signaling pathway is highly conserved among all chemotactic bacteria. The system comprises two modules: one for environmental sensing and signal transduction toward the flagellar motor, and the other for adapting to the constant level of background stimulation and providing short-term memory for temporal comparisons. Previous experimental analysis and mathematical modeling have suggested that all components of the paradigmatic chemotaxis pathways inEscherichia coliare essential. This indicates that it may contain a minimal set of protein components necessary to mediate gradient sensing and behavioral response. To test this assumption, here we subjected strains carrying deletions in chemotaxis genes to experimental laboratory evolution. We observed that the core components of the chemotaxis pathway are indeed essential. However, the absence of individual auxiliary pathway proteins, including the adaptation enzymes that are conserved in a vast majority of bacteria, and the phosphatase, could be compensated for to varying degrees by changes in other pathway components. Our results suggest that the experimental evolution of these deletion strains has led to the emergence of alternative strategies for bacterial chemotaxis, demonstrating the surprisingly rapid evolvability of this signaling network.
Publisher
Cold Spring Harbor Laboratory