Differential Patterns of Cross-Protection against Antigenically Distinct Variants in Small Animal Models of SARS-CoV-2 Infection

Author:

Selvaraj Prabhuanand,Stauft Charles B.,Liu ShufengORCID,Sangare Kotou,Wang Tony T.ORCID

Abstract

AbstractContinuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will likely force more future updates of vaccine composition. Based on a series of studies carried out in human ACE2 transgenic mice (K18-hACE2) and Syrian hamsters, we show that immunity at the respiratory tract, acquired through either previous infection or vaccination with an in-house live attenuate virus, offers protection against antigenically distinct variants in the absence of variant spike-specific neutralizing antibodies. Interestingly, immunity acquired through infection of a modern variant (XBB.1.5) was insufficient in preventing brain infection by the ancestral virus (WA1/2020) in K18-hACE2 mice. Similarly, previous infection with WA1/2020 did not protect against brain infection by XBB.1.5. Our results highlight the importance of immune components other than neutralizing antibodies in maintaining protection against new variants in the respiratory tract, but also paint scenarios where a monovalent vaccine based on a contemporary variant may be less effective against the ancestral strain.ImportanceMany studies have assessed the cross neutralization of various SARS-CoV-2 variants induced by breakthrough infections or vaccine boosters. Few studies, however, have modeled a more severe type of breakthrough infection. Here, we show that immunity acquired through a previous infection by either a historical virus (WA1/2020) or a contemporary variant (XBB.1.5) failed to protect against brain infection of K18-hACE2 mice by an antigenically distinct virus, although it largely protected the respiratory tract. Our results provided a potential model to investigate the role of different immune components in curbing SARS-CoV-2 infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3