Statistical methods for chemical mixtures: a roadmap for practitioners

Author:

Hao Wei,Cathey Amber L.,Aung Max M.,Boss Jonathan,Meeker John D.,Mukherjee Bhramar

Abstract

AbstractQuantitative characterization of the health impacts associated with exposure to chemical mixtures has received considerable attention in current environmental and epidemiological studies. With many existing statistical methods and emerging approaches, it is important for practitioners to understand when each method is best suited for their inferential goals. In this study, we conduct a review and comparison of 11 analytical methods available for use in mixtures research, through extensive simulation studies for continuous and binary outcomes. These methods fall in three different classes: identifying important components of a mixture, identifying interactions and creating a summary score for risk stratification and prediction. We carry out an illustrative data analysis in the PROTECT birth cohort from Puerto Rico. Most importantly we develop an integrated package “CompMix” that provides a platform for mixtures analysis where the practitioner can implement a pipeline for several types of mixtures analysis.Our simulation results suggest that the choice of methods depends on the goal of analysis and there is no clear winner across the board. For selection of important toxicants in the mixture and for identifying interactions, Elastic net by Zou et al. (Enet), Lasso for Hierarchical Interactions by Bien et al (HierNet), Selection of nonlinear interactions by a forward stepwise algorithm by Narisetty et al. (SNIF) have the most stable performance across simulation settings. Additionally, the predictive performance of the Super Learner ensembling method by Van de Laan et al. and HierNet are found to be superior to the rest of the methods. For overall summary or a cumulative measure, we find that using the Super Learner to combine multiple Environmental Risk Scores can lead to improved risk stratification properties. We have developed an R package “CompMix: A comprehensive toolkit for environmental mixtures analysis”, allowing users to implement a variety of tasks under different settings and compare the findings.In summary, our study offers guidelines for selecting appropriate statistical methods for addressing specific scientific questions related to mixtures research. We identify critical gaps where new and better methods are needed.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3