Abstract
ABSTRACTEukaryotes carry three types of Structural Maintenance of Chromosomes (SMC) protein complexes, condensin, cohesin, and SMC5/6, which are ATP-dependent motor proteins that remodel the genome via DNA loop extrusion. SMCs modulate DNA supercoiling, but it has remained incompletely understood how this is achieved. Here we present a single-molecule magnetic tweezers assay that directly measures how much twist is induced by an individual SMC in each loop-extrusion step. We demonstrate that all three SMC complexes induce the same large negative twist (i.e., a linking number change ΔLk of -0.6 at each loop-extrusion step) into the extruded loop, independent of step size. Using ATP-hydrolysis mutants and non-hydrolysable ATP analogues, we find that ATP binding is the twist-inducing event during the ATPase cycle, which coincides with the force-generating loop-extrusion step. The fact that all three eukaryotic SMC proteins induce the same amount of twist indicates a common DNA-loop-extrusion mechanism among these SMC complexes.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献