Personalized phosphoproteomics of skeletal muscle insulin resistance and exercise links MINDY1 to insulin action

Author:

Needham Elise J.ORCID,Hingst Janne R.ORCID,Onslev Johan D.ORCID,Diaz-Vegas Alexis,Leandersson Magnus R.ORCID,Kristensen Jonas Møller,Kido Kohei,Richter Erik A.ORCID,Højlund Kurt,Parker Benjamin L.ORCID,Cooke KristenORCID,Yang Guang,Pehmøller Christian,Humphrey Sean J.ORCID,James David E.,Wojtaszewski Jørgen F.P.ORCID

Abstract

SummaryType 2 diabetes is preceded by a defective insulin response, yet our knowledge of the precise mechanisms is incomplete. Here, we investigate how insulin resistance alters signalling responses in skeletal muscle and how this is modified by exercise. We measured parallel phenotypes and phosphoproteomes of insulin resistant and insulin sensitive individuals as they responded to exercise and insulin (n=19, 114 biopsies), quantifying over 12,000 phosphopeptides in each biopsy. Our personalized phosphoproteomics approach revealed that insulin resistant individuals have selective and time-dependent signalling alterations. Insulin resistant subjects have reduced insulin-stimulated mTORC1 responses and alterations to non-canonical rather than canonical insulin signalling. Prior exercise promotes insulin sensitivity even in insulin resistant individuals by ‘priming’ a portion of insulin signalling prior to insulin infusion. This includes MINDY1 S441, which is elevated in insulin-sensitive subjects and primed by prior exercise. MINDY1 contains a missense variant that is protective for type 2 diabetes but its role in disease risk is unknown. We show that MINDY1 S441 phosphorylation is downstream of AKT, and MINDY1 knockdown enhances insulin-stimulated glucose uptake in rat myotubes. This work delineates the signalling alterations in insulin resistant skeletal muscle and how exercise partially counteracts these and identifies MINDY1 as a regulator of insulin action.HighlightsInsulin resistance primarily alters non-canonical insulin signalling.mTORC1 substrates were most defective in insulin resistance.Exercise counteracts insulin signalling defects including MINDY1 S441.MINDY1 is a negative regulator of insulin sensitivity in rat myotubes and S441 is downstream of AKT.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3