MuViSS : Muscle, Visceral and Subcutaneous Segmentation by an automatic evaluation method using Deep Learning

Author:

Wasielewski Edouard,Boudjema KarimORCID,Sulpice LaurentORCID,Pecot ThierryORCID

Abstract

AbstractPurposePatient body composition is a major factor in patient management. Indeed, assessment of SMI as well as VFA and, to a lesser extent, SFA is a major factor in patient survival, particularly in surgery. However, to date, there is no simple, rapid, open-access assessment method. The aim of this work is to provide a simple, rapid and accurate tool for assessing patients’ body composition.Material and methodsA total of 343 patients underwent liver transplantation at the University Hospital of Rennes between January 1st, 2012 and December 31s, 2018. Image analysis was performed using the open source software ImageJ. Tissue distinction was based on Hounsfield density. The training dataset used 332 images (320 for training and 12 for validation). The model was evaluated on 11 patients. The complete software and video package is available athttps://github.com/tpecot/MuViSS.ResultsIn total, the model was trained with 332 images and evaluated on 11 images. Model accuracy is 0.974 (SD 0.003), Jaccard’s index is 0.98 for visceral fat, 0.895 for muscle and 0.94 for subcutaneous fat. The Dice index is 0.958 (SD 0.003) for visceral fat, 0.944 (SD: 0.012) for muscle and 0.970 (SD: 0.013) for subcutaneous fat. Finally, the Normalized root mean square error is 0.007 for visceral fat, 0.0518 for muscle and 0.0124 for subcutaneous fat.ConclusionTo our knowledge, this is the first freely available model for assessing body composition. The model is fast, simple and accurate, based on Deep Learning.Statements and declarationsAll authors declare no conflict of interest

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3