A Hierarchical Model for eDNA Fate and Transport Dynamics Accommodating Low Concentration Samples

Author:

Augustine Ben C.ORCID,Hutchins Patrick R.ORCID,Jones Devin N.ORCID,Williams Jacob R.ORCID,Leinonen EricORCID,Sepulveda Adam J.ORCID

Abstract

AbstractEnvironmental DNA (eDNA) sampling is an increasingly important tool for answering ecological questions and informing aquatic species management; however, several factors currently limit the reliability of ecological inference from eDNA sampling. Two particular challenges are 1) determining species source location(s) and 2) accurately and precisely measuring low concentration eDNA samples in the presence of multiple sources of ecological and measurement variability. The recently introduced eDNA Integrating Transport and Hydrology (eDITH) model provides a framework for relating eDNA measurements to source locations in riverine networks, but little empirical work has been done to test and refine model assumptions or accommodate low concentration samples, that can be systematically undermeasured. To better understand eDNA fate and transport dynamics and our ability to reliably quantify low concentration samples, we developed a hierarchical model and used it to evaluate a fate and transport experiment. Our model addresses several low concentration challenges by modeling the number of copies in each PCR replicate as a latent variable with a count distribution and conditioning detection and quantification on replicate copy number. We provide evidence that the eDNA removal rate declined through time, estimating that over 80% of eDNA was removed over the first 10 meters, traversed in 41 seconds. After this initial period of rapid decay, eDNA decayed slowly with consistent detection through our farthest site 1km from the release location, traversed in 250 seconds. Our model further allowed us to detect extra-Poisson variation in the allocation of copies to replicates. We extended our hierarchical model to accommodate a continuous effect of inhibitors and used our model to provide evidence for the inhibitor hypothesis and explore the potential implications. While our model is not a panacea for all challenges faced when quantifying low-concentration eDNA samples, it provides a framework for a more complete accounting of uncertainty.

Publisher

Cold Spring Harbor Laboratory

Reference81 articles.

1. General methods for monitoring convergence of iterative simulations;Journal of computational and graphical statistics,1998

2. Improving the reliability of edna data interpretation;Molecular Ecology Resources,2021

3. qpcr primer design revisited;Biomolecular Detection and Quantification,2017

4. Does size matter? an experimental evaluation of the relative abundance and decay rates of aquatic environmental dna;Environmental Science & Technology,2018

5. Estimating species distribution and abundance in river networks using environmental DNA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3