Model-driven engineering ofCutaneotrichosporon oleaginosusATCC 20509 for improved microbial oil production

Author:

Duman-Özdamar Zeynep EfsunORCID,Julsing Mattijs K.ORCID,Verbokkem Janine A.C.,Wolbert Emil,dos Santos Vitor A.P. MartinsORCID,Hugenholtz JeroenORCID,Suarez-Diez MariaORCID

Abstract

AbstractConsumption of plant-based oils, especially palm oil, is increasing at an alarming rate. This boosted demand for palm oil has drastic effects on the ecosystem as its production is not sustainable.C. oleaginosusis an oleaginous yeast with great potential as a source for microbial-based oil production which is a sustainable alternative to palm oil. However, microbial processes are not yet economically feasible to replace palm oil, unto a large extent due to limited lipid accumulation in the microbe, which limits titers and productivity. Therefore, obtaining enhanced lipid accumulation is essential to render this process commercially viable. Herein we deployed a systematic, iterative Design-Build-Test-Learn (DBTL) approach to establishC. oleaginosusas an efficient fatty acid production platform. In the design step, we identified genes and medium supplements that improved lipid content. To this end, we compared its transcriptional landscape in conditions with high and low amounts of lipid production. A metabolic map was reconstructed and integrated with the expression data. Finally, the genome-scale metabolic model ofC. oleaginosuswas used to explore metabolism under maximal growth and maximal production conditions. The combination of these four analyses led to the selection of four overexpression targets (ATP-citrate lyase (ACL1), acetyl-CoA carboxylase (ACC), threonine synthase (TS), and hydroxymethylglutaryl-CoA synthase (HMGS)) and five media supplements (biotin, thiamine, threonine, serine, and aspartate). We established an electroporation-based co-transformation method to implement selected genetic interventions. These findings were experimentally validated in the build and test steps of the DBTL approach by adding supplements into the medium and overexpressing the identified genes. Characterization of ACL, ACC, and TS at various C/N ratios, and the addition of medium supplements provided up to 56% (w/w) lipid content, and a 2.5-fold increase in total lipid in the glycerol and urea-based defined medium. In the learn step, quadratic models identified the optimum C/N ratios shifted towards around C/N240. These results firmly confirmC. oleaginousas a sustainable alternative to replace palm as an oil source.HighlightsTranscriptional profile and metabolic model analyzed, predicting genetic targets and medium supplements.Genetic targets and medium supplements for improved oil production.The genetic toolbox forC. oleaginosuswas expanded (co-transformation method, promoters, genes, and terminators).Experimental validations showed that biotin, and threonine increased lipid content.Overexpression ofACL1, ACC,andTSinC. oleaginosusprovided higher oil content.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3