Abstract
AbstractThe frontal cortex plays a critical role in decision-making. One specific frontal area, the anterior cingulate cortex, has been identified as crucial for setting a threshold for how much evidence is needed before a choice is made (Domenech & Dreher, 2010). Threshold is a key concept in drift diffusion models, a popular framework used to understand decision-making processes. Here, we investigated the role of the prelimbic cortex, part of the rodent cingulate cortex, in decision making. Male and female rats learned to choose between stimuli associated with high and low value rewards. Females learned faster, were more selective in their responses, and integrated information about the stimuli more quickly. By contrast, males learned more slowly and showed a decrease in their decision thresholds during choice learning. Inactivating the prelimbic cortex in female and male rats sped up decision making without affecting choice accuracy. Drift diffusion modeling found selective effects of prelimbic cortex inactivation on the decision threshold, which was reduced with increasing doses of the GABA-A agonist muscimol. Stimulating the prelimbic cortex through mu opioid receptors slowed the animals’ choice latencies and increased the decision threshold. These findings provide the first causal evidence that the prelimbic cortex directly influences decision processes. Additionally, they suggest possible sex-based differences in early choice learning.
Publisher
Cold Spring Harbor Laboratory