Impact of extracellular current flow on action potential propagation in myelinated axons

Author:

Abdollahi NooshinORCID,Prescott Steven AORCID

Abstract

ABSTRACTMyelinated axons conduct action potentials, or spikes, in a saltatory manner. Inward current caused by a spike occurring at one node of Ranvier spreads axially to the next node, which regenerates the spike when depolarized enough for voltage-gated sodium channels to activate, and so on. The rate at which this process progresses dictates the velocity at which the spike is conducted, and depends on several factors including axial resistivity and axon diameter that directly affect axial current. Here we show through computational simulations in modified double-cable axon models that conduction velocity also depends on extracellular factors whose effects can be explained by their indirect influence on axial current. Specifically, we show that a conventional double-cable model, with its outside layer connected to ground, transmits less axial current than a model whose outside layer is less absorptive. A more resistive barrier exists when an axon is packed tightly between other myelinated fibers, for example. We show that realistically resistive boundary conditions can significantly increase the velocity and energy efficiency of spike propagation, while also protecting against propagation failure. Certain factors like myelin thickness may be less important than typically thought if extracellular conditions are more resistive than normally considered. We also show how realistically resistive boundary conditions affect ephaptic interactions. Overall, these results highlight the unappreciated importance of extracellular conditions for axon function.SIGNIFICANCE STATEMENTAxons transmit spikes over long distances. Transmission is sped up and made more efficient by myelination, which allows spikes to jump between nodes of Ranvier without activating the intervening (internodal) membrane. Conduction velocity depends on the current transmitted axially from one node to the next. Axial current is known to depend on a variety of features intrinsic to myelinated fibers (e.g. axon diameter, myelin thickness) but we show here, through detailed biophysical simulations, how extracellular conditions (e.g. axon packing density) are also important. The effects ultimately boil down to the variety of paths current can follow, and the amount of current taking alternative paths rather than flowing directly from one node to the next.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3