Validation of an unbiased metagenomic detection assay for RNA viruses in viral transport media and plasma

Author:

Kappell Anthony D.ORCID,Schulte Kathleen Q.ORCID,Scheuermann Elizabeth A.ORCID,Scholz Matthew B.ORCID,Keplinger Nicolette C.,Scholes Amanda N.ORCID,Wolt Taylor A.,June Viviana M.ORCID,Schulte Cole J.,Allen Leah W.,Ternus Krista L.ORCID,Hewitt F. CurtisORCID

Abstract

AbstractUnbiased long read sequencing holds enormous potential for the detection of pathogen sequences in clinical samples. However, the untargeted nature of these methods precludes conventional PCR approaches, and the metagenomic content of each sample increases the challenge of bioinformatic analysis. Here, we evaluate a previously described novel workflow for unbiased RNA virus sequence identification in a series of contrived and real-world samples. The novel multiplex library preparation workflow was developed for the Oxford Nanopore Technologies (ONT) MinIONTMsequencer using reverse transcription, whole genome amplification, and ONT’s Ligation Sequencing Kit with Native Barcode Expansion. The workflow includes spiked MS2 Phage as an internal positive control and generates an 8-plex library with 6 samples, a negative control and agfptranscript positive control. Targeted and untargeted data analysis was performed using the EPI2ME Labs framework and open access tools that are readily accessible to most clinical laboratories. Contrived samples composed of common respiratory pathogens (Influenza A, Respiratory Syncytial Virus and Human Coronavirus 229E) in viral transport media (VTM) and bloodborne pathogens (Zika Virus, Hepatitis A Virus, Yellow Fever Virus and Chikungunya Virus) in human plasma were used to establish the limits of detection for this assay. We also evaluated the diagnostic accuracy of the assay using remnant clinical samples and found that it showed 100% specificity and 62.9% clinical sensitivity. More studies are needed to further evaluate pathogen detection and better position thresholds for detection and non-detection in various clinical sample metagenomic mixtures.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3