NLRP3 and AIM2 inflammasomes exacerbate the pathogenic Th17 cell response to eggs of the helminthSchistosoma mansoni

Author:

Suresh Kumar Meena Kumari Madhusoodhanan,Liu Pengyu,Jump Kaile,Morales Yoelkys,Miller Emily A,Shecter Ilana,Stadecker Miguel J.,Kalantari ParisaORCID

Abstract

AbstractInfection with the helminthSchistosoma mansonican cause exacerbated morbidity and mortality via a pathogenic host CD4 T cell-mediated immune response directed against parasite egg antigens, with T helper (Th) 17 cells playing a major role in the development of severe granulomatous hepatic immunopathology. The role of inflammasomes in intensifying disease has been reported; however, neither the types of caspases and inflammasomes involved, nor their impact on the Th17 response are known. Here we show that enhanced egg-induced IL-1β secretion and pyroptotic cell death required both caspase-1 and caspase-8 as well as NLRP3 and AIM2 inflammasome activation. Schistosome genomic DNA activated AIM2, whereas reactive oxygen species, potassium efflux and cathepsin B, were the major activators of NLRP3. NLRP3 and AIM2 deficiency led to a significant reduction in pathogenic Th17 responses, suggesting their crucial and non-redundant role in promoting inflammation. Additionally, we show that NLRP3- and AIM2-induced IL-1β suppressed IL-4 and protective Type I IFN (IFN-I) production, which further enhanced inflammation. IFN-I signaling also curbed inflammasome-mediated IL-1β production suggesting that these two antagonistic pathways shape the severity of disease. Lastly, Gasdermin D (Gsdmd) deficiency resulted in a marked decrease in egg-induced granulomatous inflammation. Our findings establish NLRP3/AIM2-Gsdmd axis as a central inducer of pathogenic Th17 responses which is counteracted by IFN-I pathway in schistosomiasis.SummarySchistosomiasis is a major tropical parasitic disease caused by trematode worms of the genus Schistosoma. Morbidity and mortality in infection with the speciesSchistosoma mansoniare due to a pathogenic CD4 T cell-mediated immune response directed against parasite eggs, resulting in granulomatous inflammation. In severe cases of schistosomiasis, there is liver fibrosis, hepatosplenomegaly, portal hypertension, gastro-intestinal hemorrhage and death. Here we describe the role of two proteins, the NLRP3 and AIM2 inflammasomes, in intensifying disease. We found that upstream proteins which activate these inflammasomes are caspase-1 and caspase 8; these in turn lead to the activation of another protein, Gasdermin D (Gsdmd), which facilitates the release of the proinflammatory cytokine IL-1β. Importantly, we observed that mice deficient in Gsdmd exhibit diminished pathology. Finally, we discovered that the protective Type I Interferon (IFN-I) pathway counteracts the caspase/inflammasome/Gsdmd axis thereby controlling egg mediated inflammation. These results give us a deeper understanding of the functional features of the crosstalk between inflammasome and IFN-I pathway, which may lead to the identification of novel targets for therapeutic intervention.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3