Classification and analysis of retinal interneurons by computational structure under natural scenes

Author:

Lee Dongsoo,Kim Juyoung,Baccus Stephen A.ORCID

Abstract

AbstractInhibitory neurons are diverse across the brain, but for the visual system we lack the ability to functionally classify these neurons under complex natural stimuli. Here we take the approach of classifying retinal amacrine cell responses to natural scenes using optical recording and an interpretable neural network model. We fit mouse amacrine cell responses to a two-layer convolutional neural network model of a class shown previously to accurately capture salamander ganglion cell responses to natural scenes. Using an approach from interpretable machine learning, we determined for each stimulus the model interneurons that generated each amacrine response, analogous to the set of bipolar cells that target the amacrine population. From this analysis we clustered amacrine cells not by their natural scene responses, but by the model presynaptic neurons that constructed those responses, conservatively finding approximately seven groups by this approach. By analyzing the set of model presynaptic input neurons for each amacrine cluster, we find that distributed rather than dedicated inputs generate natural scene responses for different amacrine cell types. Additional analyses revealed distinct transient and sustained modes exhibited by the network during the response to simple flashes. These results give insight into the computational structure of how the diverse amacrine cell population responds to natural scenes, and generate multiple quantitative hypotheses for how synaptic inputs generate those responses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3