Random forest machine-learning algorithm classifies white- and brown-rot fungi according to the number of Carbohydrate-Active enZyme genes

Author:

Hasegawa Natsuki,Sugiyama Masashi,Igarashi KiyohikoORCID

Abstract

AbstractWood-rotting fungi play an important role in the global carbon cycle because they are only known organisms that digest wood, the largest carbon stock in nature. In the present study, we used linear discriminant analysis and random forest (RF) machine learning algorithms to predict white- or brown-rot decay modes from the numbers of genes encoding Carbohydrate-Active enZymes (CAZymes) with over 98% accuracy. Unlike other algorithms, RF identified specific genes involved in cellulose and lignin degradation, including auxiliary activities (AA) family 9 lytic polysaccharide monooxygenases, glycoside hydrolase family 7 cellobiohydrolases, and AA family 2 peroxidases, as critical factors. This study sheds light on the complex interplay between genetic information and decay modes and underscores the potential of RF for comparative genomics studies of wood-rotting fungi.ImportanceWood-rotting fungi are categorized as either white- or brown-rot modes based on the coloration of decomposed wood. The process of classification can be influenced by human biases. The random forest machine learning algorithm effectively distinguishes between white- and brown-rot fungi based on the presence of Carbohydrate-Active enZyme genes. These findings not only aid in the classification of wood-rotting fungi but also facilitate the identification of the enzymes responsible for degrading woody biomass.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3