Abstract
AbstractSerous endometrial carcinoma (SEC) constitutes about 10% of endometrial carcinomas and is one of the most aggressive and lethal types of uterine cancer. Due to the rapid progression of SEC, early detection of this disease is of utmost importance. However, molecular and cellular dynamics during the pre-dysplastic stage of this disease remain largely unknown. Here, we provide a comprehensive census of cell types and their states for normal, pre-dysplastic, and dysplastic endometrium in a mouse model of SEC. This model is associated with inactivation of tumor suppressor genesTrp53andRb1, whose pathways are altered frequently in SEC. We report that pre-dysplastic changes are characterized by an expanded and increasingly diverse immature luminal epithelial cell populations. Consistent with transcriptome changes, cells expressing the luminal epithelial marker TROP2 begin to substitute FOXA2+ cells in the glandular epithelium. These changes are associated with a reduction in number and strength of predicted interactions between epithelial and stromal endometrial cells. By using a multi-level approach combining single-cell and spatial transcriptomics paired with screening for clinically relevant genes in human endometrial carcinoma, we identified a panel of 44 genes suitable for further testing of their validity as early diagnostic and prognostic markers. Among these genes are known markers of human SEC, such as CDKN2A,and novel markers, such asOAS2 and OASL,members of 2-5A synthetase family that is essential for the innate immune response. In summary, our results suggest an important role of the luminal epithelium in SEC pathogenesis, highlight aberrant cell-cell interactions in pre-dysplastic stages, and provide a new platform for comparative identification and characterization of novel, clinically relevant prognostic and diagnostic markers and potential therapeutic modalities.
Publisher
Cold Spring Harbor Laboratory